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Abstract

This paper presents a framework for examining joint optimal channel-capacity allo-
cation and controller design for networked control systems using store-and-forward
networks in a discrete-time linear time-invariant setting. The resultant framework
provides a synthesis procedure for designing distributed linear control laws for
capacity-constrained networks taking the allocation of the capacity within the net-
work into account.
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For networked systems with a large number of nodes (sensors, controllers and
actuators) or systems where mutual communication amongst all nodes is dif-
ficult or slow, networked control system design presents significant challenges
including considerations of the choice of network topology (inter-node con-
nectivity and inter-node delay), allocation of inter-node channel capacity and
total network capacity in addition to the controller design under these commu-
nication constraints. These considerations are similar to the guiding principles
of distributed control system design.

The philosophy of distributed system design is to dispense with the notion
that the system in question can be controlled through a single centralized
control law and distribute the control task across a number of communicating

1 This work was supported by the Australian Research Council under the Aus-
tralian Professional Fellowship & Discovery Grants Scheme.
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controllers that, together, achieve the desired behavior. Our focus will be on
stabilization.

Communication over networks entails a cost in the form of delays and capac-
ity requirements needed to achieve stability. In various settings, the results
presented in Braslavsky et al. [2004], Nair et al. [2004], Nair and Evans [2004],
Nair et al. [2007] have established the minimum data rates (channel capac-
ities) needed to stabilize linear systems 2 . For discrete-time systems, both
Braslavsky et al. [2004] and Nair et al. [2004] establish that the minimum
data rate needed to stabilize a linear plant of the form

x+ = Ax + Bu y = Cx (1)

is given by R > C, where

C =
∑
|ηi|≥1

log2 |ηi| bits per second (2)

and ηi are the eigenvalues of A.

It was shown that (2) is necessary and sufficient for the existence of a coding
and control law that gives exponential convergence of the state to the origin
from a random initial state. The primary observation in Braslavsky et al. [2004]
was that the channel may impose a bit rate limitation for signals in the control
loop through a constraint on the signal to noise ratio (SNR) for the commu-
nication channel. SNR-constrained channels were considered Braslavsky et al.
[2004] and all pre- and post- signal processing involved in the communication
link was restricted to LTI filtering and digital-to-analogue and analogue-to-
digital type operations. Hence, the communication link reduces to the noisy
channel itself. By application of the Shannon-Hartley Theorem, Braslavsky
et al. [2004] recovers the bound (2) for discrete-time systems and presents
analogous bounds for continuous-time systems.

From an NCS point of view, these results are phrased in terms of the in-
formation flow from a controller to a monolithic actuator and not the infor-
mation flows between nodes (which directly measure plant states or outputs)
and controllers. Using an SNR characterization of channel capacity, this paper
will present a discrete-time framework for optimal distributed (state-feedback)
controller design specifically taking link-to-link capacity and network structure
into account.

The signal in the per-channel SNR ratio is the state xi and we assume the
(local) controller directly actuates the plant, hence there are no capacity con-

2 Nonlinear results are established in Liberzon and Hespanha [2005], Nair and Evans
[2004] but we restrict our attention to linear results where the bounds have been
shown to be necessary and sufficient and the calculations of the bounds is tractable.
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straints in communicating the control signal to the plant. Our design frame-
work establishes the lowest SNR needed to communicate individual states to
any controller uj but without reference to the path traversed in the network;
the relevant SNR, and hence, capacity, for each state is maintained along path
components from the node measuring the state to (each) controller. The next
phase of the design process is solving for the optimal allocation of the ca-
pacities within directed graphs. Regarding the node measuring state xr as a
producer of a commodity r and each controller dependent on xr as a consumer,
the capacity allocation problem can be posed as a multi-commodity graph flow
problem that is solved efficiently through linear programming (LP).

The design process posited entails:

(a) solving for the optimal linear control law compatible with the information
structure imposed by the network graph;

(b) solving for end-to-end (state-to-controller) capacities; and
(c) determining the optimal allocation of capacities within the network, thereby

establishing the capacities along each edge of directed graphs describing
the network.

1 Information Structures for Control

An information structure for a control system is, essentially, a description of
the dependencies of the control law on observable system information. Hence-
forth, our discussion will be restricted to stochastic discrete-time systems with
state feedback:

z+ = Φz + Γu + w , (3)

and cost functions of the form

v = E|Cz + Du|2 , (4)

where z(0) is Gaussian and zero-mean and w is zero-mean white Gaussian
noise with unit variance (identity covariance), hence, “dependence” is equiva-
lent to non-zero covariance between respective random variables. As an exam-
ple of an information structure, neglecting channel noise and writing uj(k) =
µj(z1(k), z2(k), z4(k − 3)), we are implying that control uj depends only the
current values of z1, z2 and z4 delayed by three time-steps (and no other ran-
dom variables). We can also express this information structure in the form of
a directed graph as in Figure 1.

Dependency of uj(k) on state zi(k−∆ji) in an information structure is equiv-
alent to connectivity along a directed path in the graph with a path-length
of ∆ji. Note that dependencies of uj(k) on zi(k) corresponds to collocation of
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Fig. 1. Directed graph representation of an information structure.

uj and zi at a graph vertex and independence of uj and zi is equivalent to
asserting that there does not exist a directed path from zi to uj.

Suppose now that instead of representing an information structure, Figure 1
represents a network topology. That is, the directed paths represent existence
of a directed network communication channel between elements of the path
(with delays commensurate with path-length). In a directed sense, each con-
nected component of the graph is a representation of allowable dependencies
of controllers on incident state variables in that graph component.

In the discussion of information structures and network-connectivity, it be-
comes evident that the plant itself may be used as a communication channel
leading to the possibility of complex nonlinear control laws that “signal” infor-
mation through the plant. The optimal design problem may quickly become
intractable if the admissible information structures are not carefully charac-
terized, as demonstrated by the so-called Witsenhausen counterexample in
stochastic optimal control Witsenhausen [1968] where it was shown that the
optimal strategies may not be linear in spite of the apparent simplicity of the
problem and Gaussian signals. Notwithstanding nonlinear laws proposed in
Martins [2006] and references cited therein, progress towards tractability of
the synthesis problem can be made by eliminating information structures that
create signaling incentives. Progress has been made in rendering the synthesis
problem tractable and, in particular, convex in Ho and Chu [1972], Rotkowitz
and Lall [2002], Bamieh et al. [2005], Bamieh and Voulgaris [2005], Rantzer
[2006] in various settings.

Our presentation builds on that of Rantzer [2006] where the (infinite-horizon)
distributed control synthesis problem is solved by expressing information struc-
ture constraints as covariance constraints and restricting the set of admissi-
ble information structures to those that eliminate the “signaling incentive”.
The synthesis problem is shown to be convex and solutions can efficiently be
obtained by solving a linear matrix inequality (LMI); e.g., through interior-
point methods described in Boyd et al. [1995]. The two central observations in
Rantzer [2006] are that for systems of the form (3) employing static state feed-
back, we can express information structure constraints as controller-process
noise covariance constraints; and, for each (sub)controller uj, either the net-
work propagates information at least as fast as the plant does, or, the network
propagates information that is not communicable through the plant. With
these observations, the optimal synthesis problem for the given information
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structure becomes

minimize E |Cz + Du|2 subject to

E {x(k)T Rju(k)} 1 ≤ j ≤ J

for appropriately chosen matrices Rj and x =
[
z(k)T w(k − 1)T . . . w(k −N)T

]T

and u(k) =
[
u1(k)T . . . uJ(k)T

]T

, where N is the length of the largest delay

from any measurement to any subcontroller. By careful selection of a cost func-
tion that penalizes per-state SNR and decoupling the notion of an information
structure from that of network-connectivity, the proceeding section establishes
the basic result for the optimal capacity-control co-design framework of this
paper.

2 State Feedback With Covariance Constraints

The following result is a general theorem on optimal state-feedback design with
covariance constraints for systems of the form x+ = Ax + Bu + Fw ,where
state variables are subject to additive noises and is analogous to [Rantzer,
2006, Theorem 1] with three key differences:

(1) the control law is the optimal linear law i.e., we assume linearity whereas
linearity is proved in Rantzer [2006];

(2) state variables are subject to additive white Gaussian channel-noise e in
the feedback path (as distinct from the usual process noise w) and as the
solution of the optimization problem establishes the respective cross and
auto-covariances of w, x, e, u, the per-state SNRs

λi =
E {x2

i }
E {e2

i }
(5)

are easily found; and
(3) the cost function now includes a term that is SNR-dependent i.e., depen-

dent on λ = diag{λ1, . . . , λnx}.

Theorem 2.1 Suppose A ∈ Rnx×nx , B ∈ Rnx×mx , C ∈ Rpx×nx , D ∈ Rpx×mx

and Rj ∈ Rnx×mx for 1 ≤ j ≤ J . Then for every δ ≥ 0, the following two
statements are equivalent:

(i) There exists γ ≥ 0, a matrix K ∈ Rnx×mx and Q ∈ Rnx×nx such that the
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stochastic difference equation

x(k + 1) = Ax(k) + Bu(k) + Fw(k) (6)

u(k) = K(x(k) + e(k)) (7)

has a stationary zero-mean solution satisfying

γ ≥ E|Cx + Dũ|2 (8)

Q ≥ E{xxT}E{eeT}−1E{xxT} (9)

Q ≥ E{xũT}E{ẽẽT}−1E{ũxT} (10)

δ ≥ α|Q|+ γ (11)

E{xT Rjũ} = 0 ∀ 1 ≤ j ≤ J , (12)

where ũ(k) = Kx(k), ẽ(k) = Ke(k), w ∈ Rn is Gaussian white noise
with unit variance with w(k) is independent of x(j) for j ≤ k and e ∈ Rnx

is a zero-mean Gaussian noise signal independent of x and w such that
E{eeT} > 0.

(ii) There exists an X ∈ R(2nx+mx)×(2nx+mx) with X ≥ 0 given by

X =


Xxx Xxũ 0

Xũx Xũũ 0

0 0 Xẽẽ


and 0 < Xee ∈ Rnx×nx such that

Xxx = [A B]X̃[A B]T + BXẽẽB
T + FF T (13)

γ ≥ tr
(
[C D]X̃[C D]T

)
(14)

0 ≤

 Xee Xxx

Xxx Q

 (15)

0 ≤

 Q Xxũ

Xũx Xẽẽ

 (16)

0 ≤ (δ − γ)I − αQ (17)

0 = tr(XũxRj) ∀ 1 ≤ j ≤ J , (18)

where

X̃ =

 Xxx Xxũ

Xũx Xũũ

 .

Moreover, if X satisfies the conditions of (ii) for the minimal feasible δ,
then (6)-(7) with the linear control law

µ(ξ) = XũxX
−1
xx ξ

6



has a solution satisfying (8)-(12). If X̃ > 0, then the control law is also
stabilizing.

Proof. The implication (i) ⇒ (ii) follows from the conditions of (i) when we
define Xee = E{eeT},

X =


Xxx Xxũ 0

Xũx Xũũ 0

0 0 Xẽẽ

 = E


x

ũ

ẽ




x

ũ

ẽ


T

,

and since w has identity covariance. Let µ(ξ) = Lξ, where L is given by
L = XũxX

−1
xx . For the implication (ii) ⇒ (i), we assume that the inequalities

of (ii) hold with the prescribed control. Since X̃ ≥ 0 we have that

Xũũ ≥ XũxX
−1
xx Xxũ . (19)

and equality can be assumed without restriction since reducing Xũũ can only
reduce δ in (17).

Similarly, (15) implies Q ≥ XxxX
−1
ee Xxx and equality can be assumed with-

out restriction as reducing Q can only reduce δ in (17) and, hence Q−1 =
X−1

xx XeeX
−1
xx . The inequality imposed by (16) implies that Q ≥ XxũX

−1
ẽẽ Xũx

and, again, we can assume equality without restriction. Combining with (2)
we have

XũxX
−1
xx XeeX

−1
xx Xxũ = Xẽẽ . (20)

With the control law gain L, (6) is given by x(k + 1) = (A + BL)x(k) +
BLe(k) + Fw(k). Let x(0) be a Gaussian random variable with E{x(0)} =
0 and E{x(0)x(0)T} = Xxx. Then, by linearity, x(1) is also Gaussian with
E{x(1)} = 0 and

E{x(1)x(1)T }
= (A + BL)E{x(0)x(0)T }(A + BL)T +

BLE{e(0)e(0)T }LT BT + FF T + (A + BL)E{x(0)e(0)T }LT BT

+ BLE{e(0)x(0)T }(A + BL)T

= (A + BL)Xxx(A + BL)T + BLXeeL
T BT + FF T

by independence of x and e

= AXxxAT + AXxũBT + BXũxAT + BXũxX−1
xx XxũBT

+ BXũxX−1
xx XeeX

−1
xx XxũBT + FF T

= AXxũAT + AXxũBT + BXũxAT + BXũũBT

+ BXẽẽB
T + FF T by (20)

= [A B]X̃[A B]T + BXẽẽB
T + FF T = Xxx ,

hence, the process is stationary with E{xxT} = Xxx. Equations (8)-(12)
follow from (14)-(18), respectively.
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Additionally, the resultant control law is stabilizing (in the ordinary sense for
w = 0, e = 0) if X > 0 with the quadratic Lyapunov function V = xT Xxxx.

3 Distributed Control With Covariance Constraints

3.1 Control Synthesis

In view of the discussion in Section 1 and suitable augmentation of the state-
space, Theorem 2.1 can be used to solve the distributed control synthesis
problem for SNR-constrained communication channels.

Consider a directed graph with a set of M nodes (vertices) V and a set of
edges E ,

(V , E), V = {1, . . . ,M} . (21)

Suppose J nodes contain controllers ui. Let (i, j) denote the directed edge
from node i to node j. We consider matrices Φ = (Φij) ∈ Rn×n where the
ni × nj block Φij is zero unless (i, j) ∈ E . This enforces the property that
the network propagates state and controller information at least as fast as the
plant and thus no signaling incentive exists. For instance:

Φ =



Φ11 0 Φ13 0

Φ21 Φ22 Φ23 0

0 Φ32 Φ33 Φ34

0 0 Φ43 Φ44



Linear quadratic team theory revisited

Anders Rantzer

Abstract— A linear quadratic stochastic control
problem is considered. The problem involves several
different controllers acting as a team, but with ac-
cess to different measurements. Under appropriate
assumptions on communication delays between the
controllers, a quadratic control objective can be opti-
mized using finite-dimensional convex optimization.

Versions of this problem has been discussed in
economic literature, as well as in statistical decision
theory. Some instances were solved in the 1960-70’s,
but significant progress on convexity properties and
the role of communication delays has recently been
made. In this paper a stochastic criterion is optimized
subject to communication delays. Control of vehicle
formations is considered as an example.

I. INTRODUCTION

Team theory was once introduced to study decision
making where the decision makers have access to
different information concerning the underlying un-
certainties [8], [6]. The theory was originally static,
but work on dynamic aspects was initiated by Wit-
senhausen [11], who also pointed out a fundamental
difficulty in such problems. Some special types of
team problems were solved in the 1970’s [10], [3], but
significant progress on convexity properties and the
role of communication between decision makers has
been made only recently [1], [2], [9], [5]. In this paper
we focus on the connection between dynamic team
problems and stochastic optimization with correlation
constraints. Solutions to such problems can be ob-
tained using the so-called S-procedure [7], [12]. The
method gives a non-conservative extension of linear
quadratic control theory to distributed control with
bounds on the rate of information propagation.

The theory is illustrated by application to control of
vehicle formations and control. It is possible to study
how the achievable control performance depends on
the local availability of measurements. For example,
the optimal control performance when each vehicle
measures the distance to its nearest neighbors is
compared with the performance achievable when ob-
serving also vehicles further away.

II. DISTRIBUTED CONTROL BY COVARIANCE CONSTRAINTS

The idea that distributed control problems can be
treated by linear quadratic optimization with covari-
ance constraints will next be explained by considering

A. Rantzer is with Department of Automatic Control, LTH,
Lund University, Box 118, SE-221 00 Lund, Sweden, rantzer at

control.lth.se.
The paper was initiated during a sabbatical at Caltech.

z1, u1

z2, u2

z3

z4

Fig. 1. The graph illustrates the interconnection structure of the
states. For example, the update of state z3 depends directly on z2,
z3 and z4, but only indirectly on z1.

an example. Consider the following linear discrete time
system:





z1(k+ 1)
z2(k+ 1)
z3(k+ 1)
z4(k+ 1)



 =





Φ11 0 Φ13 0
Φ21 Φ22 Φ23 0
0 Φ32 Φ33 Φ34

0 0 Φ43 Φ44









z1(k)
z2(k)
z3(k)
z4(k)





(1)

+





Γ1 0
0 Γ2

0 0
0 0





[
u1(k)
u2(k)

]
+





w1(k)
w2(k)
w3(k)
w4(k)





where w is white noise with unit variance, and w(k)
is independent of z( j) for j ≤ k. The zero positions
in the Φ-matrix reflect the graph structure shown
in Figure 1. We will consider the control problem to
minimize the stationary variance

E ("z"2 + "u"2)

using feedback of the form

u1(k) =µ1

(
z̄1(k), z̄2(k− 2), z̄3(k− 1), z̄4(k− 2)

)

(2)
u2(k) =µ2

(
z̄1(k− 1), z̄2(k), z̄3(k− 1), z̄4(k− 2)

)

where z̄i denotes the time history of the state zi:

z̄i(k) =





zi(k)
zi(k− 1)
zi(k− 2)

...





Notice that also the communication delay pattern in
(2) reflects the graph structure Figure 1. It takes one
time step for the value of a state to be passed from one
node to another along the graph.

!"#$%%&'()*+#,+-.%+/001+23%"'$4(+5#(-"#6+5#(,%"%($%
7'((%48#6'*9+7'((%*#-49+:;29+<=(%+>?@>19+/001

A%50BCD

>@?/??@0/>0@BE01EF/0C00+G/001+HIII !"#$

Fig. 2. Compatible Φ and information structure.

Let Γ = [Γ∗1 · · · Γ∗J ] = (Γij) ∈ Rn×m where the ni × mj block Γij is zero
unless i = j. Assume that (Φ, Γ) is stabilizable and

z(t + 1) = Φz(t) + Γu(t) + w(t) (22)

where w(t) = [w1(t) · · · wn(t)]T are zero-mean and Gaussian with E{wwT} =
I. Let

z =


z1

..

.

zJ

 u =


u1

..

.

uJ

 z†
i (t) =


zi(t)

zi(t− 1)

zi(t− 2)

.

..

 e†i (t) =


ei(t)

ei(t− 1)

ei(t− 2)

.

..


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Let v1, v2 ∈ V and let d(v1, v2) denote the shortest path from v1 to v2. In
particular,

d(v1, v1) = 0 d(v1, v2) = 1 ⇒ (v1, v2) ∈ E . (23)

When v1, v2 are not connected, we adopt the convention that d(v1, v2) = n,
where n is the dimension of the z state-space. Enumerating all vertices in
graph with a labeling v 7→ k ∈ {1, . . . ,M}, we adopt the shorthand dij =
d(i, j). Vertices are usually, but not always, associated with particular state
variables or control. However, every state variable zi and each control uj is
associated with some vertex k. Hence, for every pair (zi, k) (or (uj, k

′)), let
π : {z1, . . . , zn, u1, . . . , uJ} → {1, . . . ,M} denote the map zi 7→ k (or uj 7→ k′).
That is, for each state variable zi or control uj, π recovers the associated
vertex; i.e., π(zi) = k, π(uj) = k′.

The following theorem, stated without proof, establishes that the optimal
distributed control synthesis problem can be solved with finite capacity uti-
lization for an appropriate class of information structures. Essentially, it is an
application of Theorem 2.1 for appropriately chosen matrices.

Theorem 3.1 The following statements are equivalent for (22):

(i) There exist (linear) feedback laws

uj(t) = µj(z
†
1(t− dj̃π(z1)) + e†1(t− dj̃π(z1)),

. . . , z†n(t− dj̃π(zn)) + e†n(t− dj̃π(zn))) , (24)

where j̃ = π(uj), that together with (22) have a stationary zero-mean
solution satisfying

δ ≥ |E {xũT}E{ẽẽT}−1E{ũxT}|+ E|C̃z + Dũ|2

δ ≥ |E {xxT}E {eeT}−1E {xxT}|+ E|C̃z + Dũ|2

(ii) There exists a (linear) feedback law u(k) = µ(x + e) that together with
(22) has a stationary zero-mean solution satisfying

δ ≥ |E {xũT}E{ẽẽT}−1E{ũxT}|+ E|C̃z + Dũ|2

δ ≥ |E {xxT}E {eeT}−1E {xxT}|+ E|C̃z + Dũ|2

0 = E {ui(k)wj(k − l)}

for 1 ≤ j ≤ J and 1 ≤ l ≤ dij, where ẽ, ũ, x are defined as in Section 2.

Remark 1 Where every vertex corresponds to a state-variable, the most nat-
ural labeling of the graph is {z1, . . . , zn} 7→ {1, . . . , n}. In other cases, and with
reference to (24), the map π is needed to recover vertices from particular state
variables or controls.
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For appropriately chosen matrices Rj, the covariance constraints E {ui(k)wj(k−
l)} = 0 can be written in the form tr(XũxRj), as discussed in Section 1. Hence,
Theorem 2.1 establishes the existence of a linear feedback law with a station-
ary solution satisfying the covariance constraints. As shown in the proof of
Theorem 2.1, the closed loop is exponentially stable and thus the control law
can be written in the form

ui(k) =
∞∑

m=0

Kijm(zj(k −m) + ej(k −m)). (25)

The covariance constraints show that Kijm = 0 for m < dij and the conditions
of (ii) are met. In fact, in view of the relationship of the augmented state
variable x to z, we only need consider finite sums in (25) where the upper
terminal is given by maxi,j∈V dij + 1 .

3.2 Allocating Link Capacity

If the LMI in Theorem 3.1 is feasible, then as in Braslavsky et al. [2004], we
assume that the respective channels are not band-limited and, asymptotically,
the capacities are given by

Ci =
λi

2 ln 2
, (26)

where λi denote the ith SNR.

For a given directed network graph, these data-rates or flows can be allocated
optimally along edges or links of the network by solving an appropriate multi-
commodity graph flow problem:

(1) Each control uj is a consumer of information flows of state variables that
it depends on (commodities). In particular, any uj consumes zi at a rate
of Ci.

(2) Each vertex of the network graph associated with a state variable zi is a
producer of a commodity with an output rate of Ji · Ci, where Ji is the
number of controllers that consume zi.

Condition 2 asserts that each controller “gets its own copy” of state variable
flows that it consumes. Enumerating the vertices of the network graph by
V = {1, . . . ,M}, denoting the edges of the graph by E , the set of commodities
R = {1, . . . , n} and, denoting the directed flows of commodity r from i to j
by f r

ij, we have

∑
j∈Out(i)

f r
ij + Dr

i =
∑

j∈In(i)

f r
ji + S r

i r ∈ R, i ∈ V , (27)
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where Out(i) = {j : (i, j) ∈ E }, In(i) = {j : (j, i) ∈ E } and

Dr
i =

 Ci if i is a consumer of r

0 otherwise
(28)

S r
i =

 JiCi if i is a producer of r

0 otherwise.
(29)

Note that (27) is a linear (equality) constraint on any graph flow optimization
problem. Let fij =

∑
r∈R f r

ij and we adopt the convention that fii = 0. The
capacity allocation problem becomes:

minimize
∑

i,j∈V
cijfij subject to (30)

fij ≥ 0, i, j ∈ V (31)

and the conservation of flow constraint (27).

4 Case Studies & Comparisons

This section will consider the following five-node system:

z+
i = izi + ui + wi i ∈ {1, . . . , 5} , (32)

where E {wwT} = I together with the quadratic-cost function

δ = E(zT Pz + uT Nu) (33)

as the subject of discourse to explore several features of the results of this
paper, where

N = P = [pij] =


0.6222 −1.1103 −0.3899 −0.4816 −0.1399

−1.1103 24.8482 9.0286 13.1770 −2.7969

−0.3899 9.0286 4.9151 6.7254 −0.0525

−0.4816 13.1770 6.7254 9.4213 −0.3244

−0.1399 −2.7969 −0.0525 −0.3244 1.1443

 . (34)

Ignoring issues of channel-capacity momentarily, there are two extremes with
respect to the information structure of the system:

(a) nodes are disconnected, that is, for each node i, ui(k) is a function of zi(k)
only;
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(b) nodes are completely connected with a delay-free network graph, that is,
for each node i, ui(k) is a function of z1(k), . . . , z5(k).

Note that both of these information structures are admissible as the system
is decoupled. The optimal control law is in fact linear and can be found via
standard LQG theory in both cases. For systems of the form:

z+ = Φz + Γu + w , (35)

the optimal control for costs of the form (33) is given by

L = (N + ΓT SΓ)−1(ΓT SΓ) ,

where S solves the algebraic Ricatti equation (ARE)

S = ΦT SΦ + PL(N + ΓST Γ)L . (36)

The minimal cost is given by δ = tr(S). See e.g., [Söderström, 2002, Chapter
11], for further details.

(a) When nodes are disconnected, the covariances in (33) vanish and we can
consider the individual costs δi = E(zT

i piizi + uT
i piiui), hence, we solve a

scalar ARE (36) for each i, with Φi = i. The minimum cost is given by
δ =

∑
i δi = 331.02.

(b) When nodes are completely connected, (36) is a 5 × 5 equation, Φ =
diag{1, . . . , 5} and the cost (33) with P and N as in (34). The minimal
cost is given by δ = 249.44.

We have that complete connectivity reduces the cost which is in line with in-
tuition. The capacity-constrained case is now examined for the network graph
structures shown in Figure 3(a), Figure 3(b) and Figure 3(c) for various infor-
mation structures and parameters of the cost function. Specifically, we will be
concerned with the “classical” information structure – availability of all state
variables at each controller without delay – as well as various restrictions of
the availability of state variables at each controller.

(a) (b) (c)

Fig. 3. Full (strong connectedness) (a), partial (b) and minimal (c) interconnectivity.

A summary of results are presented in Figure 4. Notably, the costs δ, γ and ca-
pacities Ci are independent of the network structure. This was emphasized ear-
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lier per-state capacities covariance costs do not depend on the network struc-
ture. They are the result of the application of Theorem 3.1, not of solving
the graph flow problem. Figure 4 reveals that the lowest δ-cost solutions do
not necessarily yield the lowest total flow, and hence, capacity required in the
network and the converse is also true.

α = 0.1

Network Graph Figure 3(a) Ci = {3.36, 2.88, 3.83, 2.22, 1.85} × 10−4∑
i,j∈V fij = 0.00565, δ = 321.95, γ = 293.96

Network Graph Figure 3(b) Ci = {4.60, 6.94, 9.05, 5.49, 4.37} × 10−4

u1 independent of z2
∑

i,j∈V fij = 0.0110, δ = 323.83, γ = 296.46

u2 independent of z1

Network Graph Figure 3(c) Ci = {1.16, 1.55, 5.23, 1.75, 1.13} × 10−4

ui depends only zmax{i−1,1}, zi and
∑

i,j∈V fij = 0.0019, δ = 351.11, γ = 327.04

zmin{i+1,5}

Fig. 4. Summary of costs and capacities for the design case study.

Figure 4 does not illustrate the individual flows along edges of the graph. Let
fij =

∑
r∈R f r

ij. The directional flows resultant from network graph Figure 3(c)
are given by

[fij] = 10−3 ×


0 0.1162 0 0 0

0.1548 0 0.1548 0 0

0 0.5234 0 0.5234 0

0 0 0.1752 0 0.1752

0 0 0 0.1130 0

 bps.

These flows are not identical in different directions and obviously vary by large
relative amounts along different edges of the graph. This is an indication that
using a single figure of merit e.g., a single capacity figure, within an NCS is an
inaccurate reflection of capacity requirements and that different edges (links)
have non-uniform capacity requirements.
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